son aimable contribution à l'enregistrement des données.

Références

Boudjada, A. (1980). Mater. Res. Bull. 15, 1083-1090.
Handlovic, M. (1969). Acta Cryst. B25, 227-231.
International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press. (Distributeur actuel Kluwer Academic Publishers, Dordrecht.)
Kratochvil, B. \& Podlahova, J. (1983). Acta Cryst. C39, 326-328.

Larbot, A., Durand, J. \& Cot, L. (1984). Z. Anorg. Allg. Chem. 508, 154-158.
Loukili, M., Durand, J., RafiQ, M. \& Cot, L. (1988). Acta Cryst. C44, 6-8.
Melichar, Z., Kratochvil, B. \& Podlahova, J. (1984). Acta Cryst. C40, 720-722.
Riou, A., Cudennec, Y. \& Gerault, Y. (1987). Acta Cryst. C43, 194-197.
Sheldrick, G. M. (1976). SHELX76. Programme pour la détermination des structures cristallines. Univ. de Cambridge, Angleterre.
Tijani, N., Durand, J. \& Cot, L. (1988). Acta Cryst. C44, 2048-2050.

Acta Cryst. (1990). C46, 1381-1383

Non-Stoichiometry in the $\mathbf{K M o}_{2} \mathbf{P}_{\mathbf{3}} \mathbf{O}_{\mathbf{1 2}}$-Tunnel Structure: the Oxide $\mathbf{K}_{\mathbf{0} \cdot 75} \mathbf{M o N b P}_{\mathbf{3}} \mathbf{O}_{\mathbf{1 2}}$

By A. Leclaire, M. M. Borel, A. Grandin and B. Raveau
Laboratoire de Cristallographie et Sciences des Matériaux-CRISMAT, ISMRa Boulevard du Maréchal Juin, 14032 Caen CEDEX, France

(Received 26 June 1989; accepted 8 December 1989)

Abstract

K}_{0.75} \mathrm{MoNbP}_{3} \mathrm{O}_{12}, \quad M_{r}=503 \cdot 009\), orthorhombic, Pbcm, $a=8.8518$ (5), $b=9.1453$ (11), $c=$ $12 \cdot 5174$ (11) $\AA, \quad V=1013 \cdot 3$ (3) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $3.300 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $3.13 \mathrm{~mm}^{-1}, \quad F(000)=953, \quad T=294 \mathrm{~K}, \quad R=0.029$, $w R=0.033$ for 1235 observed reflections. This compound is isostructural with $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$-type oxides. Its framework is built up from MoO_{6} octahedra and PO_{4} tetrahedra which delimit tunnels running along b. Different from $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$, the tunnels are partly occupied by the potassium ions which are distributed at random.

Introduction. Comparison of niobium and molybdenum phosphates shows that the mixed frameworks of these oxides, built up from NbO_{6} or MoO_{6} octahedra and PO_{4} tetrahedra, are very different in spite of the existence of both elements in oxidation states IV and V. The difference observed for the Mo^{\vee} phosphates is not unexpected, owing to the particular electronic structure of this cation which leads to an abnormally short Mo-O distance as shown, for instance, by $\alpha-\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{13}$ (Leclaire, Monier \& Raveau, 1983), α - and β-CsMoP ${ }_{3} \mathrm{O}_{13}$ (Lii \& Haushalter, 1987), $\beta-\mathrm{RbMo}_{2} \mathrm{P}_{3} \mathrm{O}_{13}$ (Riou \& Goreaud, 1989), γ - $\mathrm{CsMo}_{2} \mathrm{P}_{3} \mathrm{O}_{13}$ (Chen, Lii \& Wang, 1988), $\delta-\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{13}$ (Leclaire, Borel, Grandin \& Raveau, 1989a) and $A \mathrm{Mo}_{5} \mathrm{P}_{8} \mathrm{O}_{33}(A=\mathrm{Li}, \mathrm{Na}, \mathrm{Ag})$ (Lii, Johnston, Goshorn \& Haushalter, 1987). But the niobium phosphates differ also from the molybdenum phosphates by the existence of mixed-valence
compounds $\mathrm{Nb}^{\mathrm{V}}-\mathrm{Nb}^{\mathrm{IV}}$ characterized by a delocalization of the electrons as shown for the oxides $\mathrm{KNb}_{3} \mathrm{P}_{3} \mathrm{O}_{15}$ (Leclaire, Borel, Grandin \& Raveau, 1989b), $\mathrm{K}_{7} \mathrm{Nb}_{14} \mathrm{P}_{9} \mathrm{O}_{60}$ (Leclaire, Benabbas, Borel, Grandin \& Raveau, 1989) and $\mathrm{K}_{3} \mathrm{Nb}_{6} \mathrm{P}_{4} \mathrm{O}_{26}$ (Benabbas, Borel, Grandin, Leclaire \& Raveau, 1990). The most surprising feature concerns the comparison of $\mathrm{Nb}^{\mathrm{IV}}$ and $\mathrm{Mo}^{\mathrm{IV}}$. Although MoO_{2} and NbO_{2} belong to the same rutile-type structure, under the same experimental conditions we obtain different results for the same formulation. For molybdenum, $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ (Leclaire \& Raveau, 1988) with $\mathrm{Mo}^{\mathrm{IV}}$ only is obtained whereas, for niobium, we always obtain phases with mixed-valence niobium phosphates: $\mathrm{Nb}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ (Leclaire, Borel, Grandin \& Raveau, 1989c) and $\mathrm{Na}_{0.5} \mathrm{Nb}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ (Leclaire, Borel, Grandin \& Raveau, 1990). In order to understand this difference, an attempt to substitute niobium for molybdenum in the oxide $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ was made. We report here the crystal structure of the oxide $\mathrm{K}_{0.75} \mathrm{MoNbP}_{3} \mathrm{O}_{12}$.

Experimental. The synthesis was performed in two steps. First $\mathrm{H}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PO}_{4}, \mathrm{MoO}_{3}, \mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were mixed in an agate mortar in the molecular ratio to obtain the stoichiometry $\mathrm{KMo}_{0.5} \mathrm{NbP}_{3} \mathrm{O}_{12}$ and heated in air to decompose the potassium carbonate and the ammonium phosphate. The resulting mixture was then added to the required amount of molybdenum and placed in an evacuated silica ampoule. This mixture was heated for 5 d at 1373 K and then

Table 1. Atomic parameters

$\begin{gathered} B_{\mathrm{eq}}=(4 / 3)\left[a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+(2 a b \cos \gamma) \beta_{12}+(2 a c \cos \beta) \beta_{13}\right. \\ \left.+(2 b c \cos \alpha) \beta_{23}\right] . \end{gathered}$				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Mo}-\mathrm{Nb}$	$0 \cdot 24695$ (7)	0.02586 (4)	$0 \cdot 10063$ (3)	$0 \cdot 68$ (1)
K	-0.17042 (67)	$0 \cdot 15917$ (50)	$0 \cdot 25000$	$5 \cdot 15$ (14)
$\mathrm{P}(1)$	-0.02884 (19)	0.25000	0.00000	0.69 (2)
$\mathrm{P}(2)$	0.40255 (15)	$0 \cdot 36752$ (16)	$0 \cdot 13221$ (12)	0.74 (2)
$\mathrm{O}(1)$	$0 \cdot 20537$ (65)	0.01597 (71)	$0 \cdot 25000$	1.21 (10)
$\mathrm{O}(2)$	$0 \cdot 12745$ (49)	-0.15602 (49)	0.07173 (39)	1.62 (8)
O(3)	$0 \cdot 30155$ (48)	0.04000 (51)	-0.06273 (34)	1.45 (8)
$\mathrm{O}(4)$	0.37812 (53)	$0 \cdot 20556$ (44)	$0 \cdot 12177$ (37)	1.55 (8)
$\mathrm{O}(5)$	0.43106 (44)	-0.10142 (50)	$0 \cdot 12188$ (37)	1.65 (9)
O(6)	0.06527 (43)	$0 \cdot 15356$ (50)	0.07317 (36)	1.46 (8)
$\mathrm{O}(7)$	$0 \cdot 35151$ (62)	0.41444 (70)	$0 \cdot 25000$ (0)	1.04 (10)

quenched to room temperature. Some suitable black crystals were extracted from the sintered product. The composition $\mathrm{K}_{0.75} \mathrm{MoNbP}_{3} \mathrm{O}_{12}$ was deduced from microprobe analysis and confirmed by the crystal structure.

Black crystal, $0.096 \times 0.072 \times 0.0036 \mathrm{~mm}$; symmetry mmm with systematic absences 0 kl for k odd and $h 0 l$ for l odd. Space group Pbcm; Enraf-Nonius CAD-4 diffractometer. Unit cell: least squares on 25 reflections $\pm 2 \theta, 36 \leq 2 \theta \leq 44^{\circ}$. Intensity measurement by $\omega-\frac{2}{3} \theta$ scan of $(1+0.35 \tan \theta)^{\circ}$ and $(1+$ $\tan \theta) \mathrm{mm}$ counter slit determined by a study of same reflection in the $\omega \theta$ plane. Scan speed adjusted to obtain $\sigma(I) / I \leq 0.018$ or to approach it in a time limited to 60 s . Three standards for count $(006,004$, $113)$ every 2000 s and orientation ($006,440,200$) every 600 reflections: no appreciable trends. Of 4180 measured, 1235 reflections ($h_{\text {max }}=17, k_{\max }=18, l_{\text {max }}$ $=24), 2 \leq \theta \leq 45^{\circ}$, with $I / \sigma(I) \geq 3$ used to solve and refine the structure. No correction made for extinction or absorption. All subsequent calculations on an IBM 3090 by local adaptation of the classical programs; atomic scattering, factors given by these programs. Structure solved by Patterson function and heavy-atom method and refined on F by a full-matrix least-squares method with anisotropic thermal motion. $(\Delta / \sigma)_{\max }=0.004, \Delta \rho \leq 3 \mathrm{e}^{-3}, R$ $=0.029, w R=0.033, S=1 \cdot 3, w=1 / \sigma^{2}(F)$. Atomic parameters in Table 1.*

The structure of $\mathrm{K}_{0.75} \mathrm{MoNbP}_{3} \mathrm{O}_{12}$ is very similar to those described for the pure molybdenum phosphates $A \mathrm{Mo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}(A=\mathrm{K}, \mathrm{Rb}, \mathrm{Tl})$ (Leclaire et al., 1983; Leclaire \& Raveau, 1988) or for the molybdenum tungsten phosphate $\mathrm{KMoWP}_{3} \mathrm{O}_{12}$ (Benmoussa, Leclaire, Grandin \& Raveau, 1989). The host lattice $\left[\mathrm{MoNbP}_{3} \mathrm{O}_{12}\right.$) (Fig. 1) is indeed built up from MoO_{6} and NbO_{6} octahedra and PO_{4} tetra-

[^0]hedra which form tunnels running along \mathbf{b}, where the potassium ions are located. The simultaneous presence of PO_{4} and $\mathrm{P}_{2} \mathrm{O}_{7}$ groups allows the formula $\mathrm{K}_{0.75} \mathrm{MoNbO}\left(\mathrm{PO}_{4}\right)\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)$ or $\mathrm{K}_{3} \mathrm{Mo}_{4} \mathrm{Nb}_{4} \mathrm{O}_{4}\left(\mathrm{PO}_{4}\right)_{4^{-}}$ $\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{4}$ or $\mathrm{K}_{3} \mathrm{Mo}_{4} \mathrm{Nb}_{4} \mathrm{P}_{12} \mathrm{O}_{48}$ to be proposed.

The original feature concerns the occupancy factor of the potassium sites which was refined to $0 \cdot 75$, with a statistical distribution of these cations in the tunnels. This result is also confirmed by the fact that the oxide $\mathrm{K}_{0.75} \mathrm{MoNbP}_{3} \mathrm{O}_{12}$ can be synthetized as a powder in a quantitative way, whereas the oxide $\mathrm{KMoNbP}_{3} \mathrm{O}_{12}$ cannot be obtained as a pure phase. This shows the ability of this structure to show a significant deviation from stoichiometry for the K^{+} ions.

Like $\mathrm{KMoWP}_{3} \mathrm{O}_{12}$ and contrary to $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$, this phase does not exhibit a superstructure along a.

The $\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedra which are only linked to MoO_{6} and NbO_{6} octahedra are very regular, with $\mathrm{P}-\mathrm{O}$ distances ranging from 1.519 to $1.520 \AA$ (Table 2); on the other hand, the $\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedra which belong to the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups have one long $\mathrm{P}-\mathrm{O}$ bond of $1.601 \AA$ corresponding to the bridging oxygen of the diphosphate group and three other $\mathrm{P}-\mathrm{O}$ distances ranging from 1.503 to $1.507 \AA$.

The Mo and Nb atoms are distributed at random on one equivalent site as in $\mathrm{KMoWP}_{3} \mathrm{P}_{12}$, leading to only one type of octahedron, $(\mathrm{MoNb}) \mathrm{O}_{6}$. The geometry of these octahedra is very similar to that observed for $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$: one observes one shorter metal-oxygen distance of $1.908 \AA$ (Table 2) which corresponds to the O atom common to two octahedra and five longer metal-oxygen distances, ranging from $2 \cdot 004$ to $2 \cdot 105 \AA$.

Fig. 1. Projection of $\mathrm{K}_{0.75} \mathrm{MoNbP}_{3} \mathrm{O}_{12}$ along \mathbf{b}.

Table 2. Distances (\AA) and angles $\left({ }^{\circ}\right)$

PO_{4} tetrahedra						
$\mathrm{P}(1)$		$\mathrm{O}\left(2^{\text {i }}\right.$)	$\mathrm{O}\left(2^{i i}\right)$		$\mathrm{O}(6)$	$\mathrm{O}\left(6^{\text {iii) }}\right.$)
$\mathrm{O}\left(2^{\text {i }}\right.$)		519 (5)	2.486 (7)		$2 \cdot 490$ (6)	$2 \cdot 438$ (6)
$\mathrm{O}\left(2^{\text {i }}\right.$)		99.8 (3)	1.519 (5)		$2 \cdot 438$ (6)	2.490 (6)
O (6)		$0 \cdot 1$ (2)	106.7 (2)		1.520 (4)	2.543 (6)
$\mathrm{O}\left(6^{\text {iii) }}\right.$)		6.7 (2)	110.1 (2)		113.5 (2)	1.520 (4)
$\mathrm{P}(2)$		$\mathrm{O}\left(3^{\text {iii) }}\right.$)	O (4)		$\mathrm{O}\left(5^{\text {iv }}\right.$)	$\mathrm{O}(7)$
$\mathrm{O}\left(3^{\text {iii) }}\right.$)		507 (5)	$2 \cdot 534$ (6)		2.543 (6)	2.422 (5)
$\mathrm{O}(4)$		14.7 (3)	1.503 (4)		2.443 (6)	2.506 (7)
$\mathrm{O}\left(5^{\mathrm{v}}\right)$		$15 \cdot 2$ (3)	108.6 (3)		1.506 (4)	2.509 (6)
$\mathrm{O}(7)$		$2 \cdot 3$ (3)	107.7 (3)		$107 \cdot 7$ (3)	1.601 (3)
MoNbO 6 octahedra						
MoNb	$\mathrm{O}(1)$	$\mathrm{O}(2)$	O(3)	$\mathrm{O}(4)$	O(5)	O(6)
$\mathrm{O}(1)$	1.908 (1)	$2 \cdot 816$ (6)	4.012 (7)	$2 \cdot 814$ (7)	$2 \cdot 778$ (6)	$2 \cdot 832$ (6)
$\mathrm{O}(2)$	92.1	2.004 (5)	2.902 (6)	4.031 (7)	$2 \cdot 805$ (6)	$2 \cdot 884$ (6)
$\mathrm{O}(3)$	177.7 (2)	89.8 (2)	$2 \cdot 105$ (4)	2.843 (6)	$2 \cdot 886$ (6)	2.889 (6)
$\mathrm{O}(4)$	91.2 (2)	176.0 (2)	86.9 (2)	2.030 (4)	$2 \cdot 846$ (6)	2.875 (6)
$\mathrm{O}(5)$	90.0 (2)	88.4 (2)	88.8 (2)	89.3 (2)	2.020 (4)	4.036 (7)
O (6)	$92 \cdot 3$ (2)	91.7 (2)	89.0 (2)	$90 \cdot 5$ (2)	177.7 (2)	2.017 (4)
KO_{8} polyhedra						
$\mathrm{K}-\mathrm{O}\left(7^{\mathrm{V}}\right)$		2.753 (8)		- $\mathrm{O}\left(6^{\text {vii }}\right.$)	3.04	
$\mathrm{K}-\mathrm{O}\left(2^{\prime \prime}\right)$		$2 \cdot 825$ (6)		- $\mathrm{O}\left(3^{\prime}\right)$	$3 \cdot 18$	(6)
$\mathrm{K}-\mathrm{O}\left(2^{\text {vi }}\right.$)		2.825 (6)		- $\mathrm{O}\left(3^{\text {viii }}\right.$)	$3 \cdot 18$	(6)
$\mathrm{K}-\mathrm{O}(6)$		3.042 (6)		$\mathrm{K}-\mathrm{O}\left(1^{i i}\right)$	3.27	(8)

Symmetry code: (i) $-x,-y,-z$; (ii) $-x, 0 \cdot 5+y, z$; (iii) $x, 0 \cdot 5-y,-z$; (iv) $1-x, 0.5+y, z$; (v) $-x, y-0.5, z$; (vi) $-x, 0.5-y, 0.5-z$; (vii) x, y, $0 \cdot 5-z$; (viii) $-x,-y, 0 \cdot 5+z$.

The K ions are surrounded by eight O atoms, with distances less than $3 \cdot 35 \AA$ (Table 2).

It is worth pointing out that the metallic elements in octahedral coordinations exhibit a mean oxidation
state of $4 \cdot 125$ compared with 4 for $\mathrm{KMo}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$. Because of the difficulty of niobium being in the tetravalent state in phosphates, unlike molybdenum which can be presumed to be $\mathrm{Mo}^{\text {IV }}$, a mean valency of 4.25 is suggested for niobium which coincides with that observed in $\mathrm{Na}_{0.5} \mathrm{Nb}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ (Leclaire et al., 1990).

References

Benabbas, A., Borel, M. M., Grandin, A., Leclaire, A. \& Raveau, B. (1990). J. Solid State Chem. 84, 365-374.
Benmoussa, A., Leclaire, A., Grandin, A. \& Raveau, B. (1990). Acta Cryst. C45, 1277-1279.
Chen, J. J., Lif, K. H. \& Wang, S. L. (1988). J. Solid State Chem. 76, 204-209.
Leclaire, A., Benabbas, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989). J. Solid State Chem. 83, 245-254.
Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989a). Z. Kristallogr. 188, 77-83.

Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989b). J. Solid State Chem. 80, 12-16.

Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989c). Acta Cryst. C45, 699-701.
Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1990). Mater. Res. Bull. In the press.
Leclaire, A., Monier, J. C. \& Raveau, B. (1983). J. Solid State Chem. 48, 147-153.
Leclaire, A. \& Raveau, B. (1988). Acia Cryst. C44, 226-229.
Lit, K. H. \& Haushalter, R. C. (1987). J. Solid State Chem. 69, 320-328.
Lit, K. H., Johnston, D. C., Goshorn, D. P. \& Haushalter, R. C. (1987). J. Solid State Chem. 71, 131-138.

Riou, D. \& Goreaud, M. (1989). J. Solid State Chem. 79, 99-106.

Structure of Barium Copper Pyrosilicate at $\mathbf{3 0 0} \mathbf{K}$

By J. Janczak and R. Kubiak
Institute for Low Temperature and Structure Research, Polish Academy of Science, 50-950 Wroclaw, Pl Katedralny 1, Poland

and T. GŁowiak
Institute of Chemistry, Univeristy of Wroclaw, 50-383 Wroclaw, Joliot-Curie 14, Poland
(Received 28 August 1989; accepted 9 November 1989)

Abstract

Barium dicopper disilicate, $\mathrm{BaCu}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}, M_{r}$ $=432 \cdot 6$, orthorhombic, Pnma, $a=6.866$ (2), $b=$ $13 \cdot 190$ (3), $c=6.909$ (2) $\AA, V=625 \cdot 7$ (3) $\AA^{3}, Z=4$, $D_{x}=4.592 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $137.47 \mathrm{~cm}^{-1}, F(000)=792, T=300 \mathrm{~K}$, final $R=$ 0.031 for 1039 independent reflections. The structure solution and refinement established the crystal stoichiometry as $\mathrm{BaCu}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$. The structure contains isolated groups of $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$ with the $\mathrm{Si}-\mathrm{O}$ distances

0108-2701/90/081383-03\$03.00
ranging from 1.610 (4) to 1.662 (2) \AA. The barium and copper cations have irregular coordination polyhedra. Ba^{2+} is coordinated by 7 O atoms, and Cu^{2+} by $4+1 \mathrm{O}$ atoms.

Introduction. The '1-2-3'-type superconductors have the ability to interact with oxygen. This interaction is very important because superconducting properties depend on the oxygen stoichiometry (Pietraszko, (C) 1990 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52854 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

